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Bremsstrahlung in hot plasmas with partially ionized atoms

M. Lamoureux* and N. Avdoniné
!Laboratoire de Physique Atomique et Nuale, UniversifePierre et Marie Curie, 4 place Jussieu, 75252 Paris, France
’Department of Physics and Astronomy, University of Pittsburgh, Pennsylvania 15260
(Received 27 February 1996; revised manuscript received 19 Augus} 1996

Analytical bremsstrahlung results are obtained in an ionic radial potential whose screening cgndtant
to the bound electrons can be parametrized in terms of the atomic humber and the degree of ionization. By
comparison with exact numerical results published for various incident electron enErgths precision
obtained for the cross sections is discussed in view of determining the energy Wdssesl the emissivity
coefficients] and total power losse? for Maxwellian plasmas of temperatufe The discrepancy between the
Born and Elwert-Born results for these three quantities is explained and the evolution with decreasing ioniza-
tion from the Coulomb to the neutral case is studied. The relative reduction of the radiation with increasing
screening is obtained satisfactorily in the simple approximations. Extrapolations using these reductions and
tables of exacW's published for neutral atoms lead to ionic energy losses accurate to within 5%. However
J, and P can all be determined successfully by direct simple expressions involing, hv/\ 2, and/or
kT/\ 2. The precision is at worst 25% and in most cases only a few percent, especially in the range of a few
tens of keV.[S1063-651X97)02201-0

PACS numbd(s): 52.25.Nr

[. INTRODUCTION keV and tens of keV. The plasma will be assumed Maxwell-
ian and optically thin.

Bremsstrahlung is an atomic process of importance in hot In the pastW, J, andP have been calculated extensively
plasmas both for its dominant contribution to the energyand exploited on the basis of Coulomb cross sections, some-
losses[1,2] and for a current temperature diagnodi&4].  times not even at their best level of accuracy. The straight-
We recall that the energy l088(E) for an electron of given forward estimate®Vy, , Jk,, andPy, based on Kramer&r)
energyE is obtained by integrating from zero to one over thecross sections most often provide correct orders of magni-
fraction hv/E of energy radiated. The emissivity coefficient tude. The more precise results, including for the screened
J(hv) at the photon energhv is obtained by summation cases, are conveniently expressed by their dimensionless ra-
over the free electrons of the plasma, which are assumeldpS over the Kramers values, i.eW/W, J/Jy,, and
here to follow a Maxwellian distribution at temperatufe ~ P/Pk:, where the Kramers estimates recalled in E4S),

The total power los® is the result of the double integration. (19, and(27) are taken in theZ/r potential. The Coulomb
We will determineW, J, and P for partially ionized ions, results should be applied only to very hot plasmas where all

taking into account the screening by the bound electrons ang@"s arhe fully sttr_lplﬁ)eo_l. HOV\(/jevetr, in the more getnetrr(;il situa-
neglecting any screening by the free electrons of the pIasmé\'.On where partially 1onized atoms are present, the same

Our treatment is thus restricted to the temperature—densits"ﬁnm"’\tlons and interpretations are nearly always adopted,

region where the Debye-ldkel screening constant f\-,(xcept for very dense plasmas where a few types of average
. J . ' ms models hav n . In doing this, it h
Mon=[47e’NJkT]¥? is close to zero. We will make direct atoms models have been be ug6ed]. In doing this, it has

d S in the B d El BofER , been hoped that the presence of bound electrons around the
eterminations in the Born and Elwert-Bo(BB) approxi- cjeys does not introduce important modifications. It has
mations by use of a parametric screened radial potential. Th&c peen realized that more precise treatments would be

precision can be improved by extrapolation from the ”eUtra|engthy and that the numerous atomic data needed, in gen-
limit, for which accurate cross sections akd have been eral, are not available or are very difficult to obtain.
published[5]. The main utility of our approach will be for  The purpose of this paper is to evaluate how misleading
moderately hot plasmas where bremsstrahlung from partiallyhe optimism underlying the use of Coulomb results is and to
ionized atoms dominates the radiation. On the one hand, @ropose easy determinations of ionic radiative losses and
high temperatures most free electrons are very energetic amgissivities with good accuracy. Several first steps to finding
the Coulomb cross sectiofis the Z/r potentia) are appro-  solutions to this problem have been taken recef@lyl0].
priate, even for the few ions that may not yet be fully The interpolation laws presented in R¢f] are, unfortu-
stripped. On the other hand, at low temperatures line emisaately, of very limited applicability because the parametric
sion and radiative recombination would dominate. Thereforeionic potential used is available only in a few cases and
the present study mostly deals with temperatdred a few  because the Coulomb exact data needed are very scarce. In
this work, we give a general expression of the screening
ionic constant and we find solutions that do not require the
*Present address: Laboratoire de Dynamique des lons, Atomes knowledge of Coulomb data. We discuss in details the pre-
Molécules, Case 75, UniversSifeierre et Marie Curie, 4 place Jus- cision of two ab initio determinations for wide ranges of
sieu, 75252 Paris, France. energies and we also propose results obtained by extrapola-
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tions out of the neutral case. This work also goes beyond The determination of the total power 1083Py, is pre-

Ref. [9] by studying not only the cross sections amjl but  sented in Sec. V. The easiest evaluation is through(Zg),

alsoJ andP. Moreover, we express the results by formulasusingW values at the desired accuracy; that is, .3 for

that are easy to use and to apply numerically. excellent precision and Eq17b) for a precision better than
Section Il deals with the ionic radial potential and the 10%. In last casé/Py, is a simple function oiZ;/Z and

resulting bremsstrahlung cross sections. Analytical cross sed/A 7.

tions[9] have been obtained in Born and EB approximations

from a radial ionic potential depending on the screening pa-

rameter\; and it was also observed that the ratios of the Il. DETERMINATION OF THE BREMSSTRAHLUNG

neutral atom to Coulombic cross sections are obtained from CROSS SECTIONS

S|mple models with a good precision, even when the cross Two types of parametric potentials have been proposed in

sections themsglves_ are not accurate. Th's. fact had been e past to describe the very interior or the interior parts of an

ticed at lowerE’s with a classical mechanics modgl1].

- ) Iy . __atomic system. A potential of the formU,=—Z[1.0+
This feature enabled the authors to find fruitful mterpolanonvil()\r)+Vi2()\r)z+“_] correctly fits the Hartree-Fock-

laws between the neutral atom and Coulomb limits. Applica, later potential deep inside the atom. Its resourcefulness has

tlons arecllm;tedbln practice ?ecaus(e(:j Otf the extreTilrar]clty %been demonstrated for continuum wave functions and phase
precise Coulomb cross sectiof2] (data are available for shifts [16], photoeffect at high energigd7], and internal

only threeZ’s and SIX values_ OE), and also because only a conversiong 18]. Values of\ andV;; have been tabulated
few \; are accessibléonly six Z's and a few degrees of é

SO : o or six atoms ofZ ranging from 13 to 92 with various de-
|on_|zat|or). We propose _here a convenient parametrization of, ..o o ionizatiorz; [19]; they were reproduced in figures,
Ai In terms of the atomic numbet and the_ Qegree of ion- but only for neutral atoms, in a more accessible arfit.
ization Z; [see Eq(2)]. We analyze the validity of the Born Another kind of parametric potential expressek by a sum
and EB cross sections themselves for three atomic numbe :

SO N Yuk e | | ex-
and E=1-500 keV, in view of the determination &f, W, 6t two Yukawa terms exp-ar). It leads to analytical ex

47 iallv si . ) b thed out i ressions of the electron bremsstrahlung cross sections in the
and.., especially since naccuracies can be Smoothed out I, atjvistic Born approximation. Such cross sections, in-
the later integrations. The accurate quantum-mechanic

. olving the Debye screening constant, were used to calculate
cross sections tabulated for neutral atoffi$ are taken as J y 9

; i opacities in dense plasm#8]. More recently, a potential
exact values in the comparison. In the absence of very Pres, nsisting of a Coulomb tail and a screened core has been
cise data for the Coulomb case, we use the ones obtain

; > ed to determine cross sections for isolated free jOhs
from_the recommendations of Pratt and F@.h@]' This dis- . The applications were restricted to ions for which screening
cussion on the bremsstrahlung cross sections helps to fi

. i - lues were accessible. In this work, we provide a general
appro_pr]qte strategles to calculate the radiative losses and tIa‘(netermination of the screening constant and we discuss the
emissivities with good accuracy.

The energy los8V(E) per unit length of path of an elec- validity of the cross sections obtained far=1-500 keV.

tron of energyE is determined in Sec. lll. The direct Born
(B) and EB estimates are indicated in E¢$4) and (15).
The constant value of the rat=%/W°" is accounted for. . . _
As for the cross sections themselves, the ratio of the energy The radial atomic potential

losses for neutral atoms over the ones for fully stripped ions B

is nearly independent of the atomic model used. Interpolation rUi(r)==Zi=(Z=Zj)exp(—\ir) @
laws between the Coulomb and neutral atom cases would be
of little use, unfortunately, again because of the scarcity of . . - :
precise Coulomb datd 2] (only two Z's and three values of Is especially We_" sglteq to describe lons of atomic numiber

E). Very precise evaluations can be obtained instead by e and degree Of_ |on|zat|0|2'_i - We reca”l,g” passing that the
trapolations from energy losses tabulated for the neutral at_homas—Ferml mpdel gives,=0.57Z"" for t_he neutral
oms[5], as indicated by Eq178. A quicker and less accu- atom. The screening constant proposed here is better adapted

rate (better than 25%, howeveestimate ofW/Wy, is given LO the mter:llor of the at(;)m, as reqw_red t\)/i/l thg treatment cg
by Eq.(17b); it involves onlyZ,/Z andE/\ 2. remsstrahlung at moderate energies. We determine it by

using tables oh values[19] that were based on the Hartree-

which are obtained by integrations over an isotropic and:ock-SIater atqmlc potentig20]. _Fllgure 1 illustrates Fhe ac-
Maxwellian distribution at temperatuf® Use of the Gauss- CUracy of our fitho=0.8932/Za, . We then establish the
Laguerre method14] of integration is convenient and pre- relation Ofni\il to No by using the same tables and the
cise enough. Moreover, it enables one to find théT de-  [1—(Zi/2)" “1/[1 —Z/Z] dependence noticed in ReB].
pendence of the ratideg/Jg,,. For large photon energies or It enables us to establish a very S|mplg dependlenoamk.)n

at high temperatures the relativistic Coulomb Gaunt factor€- The resulting value ok; to be used in Eq(1) is thus(in
have to be used in the Gauss-Laguerre summation and i Units;ap=1 a.u=0.529x10" " m)

nonrelativistic results of15] are not valid. In the lower re-

gime, when screening is;(m)portant, use of the )nonrelativistic 1-(z,12)"

EB Gaunt factors of Eq96) and (8) in Eqg. (25) leads to 2 4 2 . o1

satisfactory determinations, accurate to within 10% in gen-)\i =0.79& 1-7,1Z 3" with n=2(3-0.002@).
eral. Thel/Jy, result depends o#,/Z, hv/T, andT/\ 2. (2

A. Parametric potential

Section IV deals with the emissivity coefficienighv),
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9 The Born analytical cross sections involve the screening
= parameten,(Z,Z;) of Eqg. (2) and the maximum and mini-
o mum momenta transferred in the collision
< r
5 I . V2mE= \2m(E—hv) .
GE’ 5 + h . ( )
]

g
@ 3 The Gaunt factor for the ion withh=2,/Z writes, in the
= nonrelativistic Born approximation,
3
& 1F
B — Gg(E,hv)= o~ 4n§+mf Wnﬁiﬁ
0 20 40 60 80 100 L= o 19 e C N2
atomic number Z
1

+A1-al?

]. (6)

While the Gaunt factor depends simply &4 /k? for the
B. Analytical bremsstrahlung cross sections Coulomb case, it depends also lofi/\ 7 andk?/\ { for the

Th inf ol b hi . h screened case.
e main features of electron bremsstrahlung, 1.€., the ra- - aq it i5 well known [13], the Elwert factoré:(E,hv) in

Fjiation ofa photon as an electron is scattereq by an at‘?m %q. (7) has been introduced in the Coulomb case to improve
ion, can be found in review pape3]. We are interested in the cross sections for high proportioms/E, whereG would

the di(;ferentia:]cross_ Se.CtiO‘m‘T('IE’h”)f/ dﬁh v) ,halready igte]: Hunphysically tend to zero otherwise. It involves the quantity
grated over the emission angles of the photon and of the, 54 5" of the incident and of the outgoing electrons, with

eIIectr_onI. Thz Klramders cros? stectlon was obtained in a seM_,,/c | the energy range treated here, we observed that
classical model and amounts to the ratio involving the exponentials is very close to unity.
Unless otherwise specified, we will therefore use the more

FIG. 1. Screening parametay of Eq. (1) in a.u. (agl) for
neutral atoms of atomic numbet. Data points are fitted by the
curve 0.8932/Z.

2 2 2 2
K22 K+

do(E.hy) = z S.. with s :16_77 a3 (ﬁ)z simple and nonrelativistic Elwert factd(E,hv). The full
2 “Kr Kr FS ’ . .
d(hv) hv(v/c) 3v3 mc and simplified Elwert factors are
)
wherec is the speed of lightn the mass of the electron,g £(E.hv)= ﬁ} l—exp —27wZars/B)
the fine-structure constand, the velocity of the incident ' B'|1—exp—27Zags/B') |’
electron, ands,,=5.61x10 3! m?=5.61 mb. In more elabo-
rate calculations or in measurements, the scalin:irand
v? remains precious to provide correct orders of magnitude. &(E,hv)= JE @)
The so-called reduced cross sects§i,hv) in Eq. (4) is the ’ VE—hp’

guantity tabulated in most published data tables. The dimen-
sionless Gaunt factor is the ratio of any type of cross section,

be it experimental or theoretical, over the Kramers cross sec- The Gaunt factor corresponding to the Elwert-Bom ap-

tion proximation becomes, in the simple version,
do(E,hv) z? doy(E,hv) JE
= s(E,hv)=G(E,hv) ——~——. | (E,hv)= ——— GiL(E,hv) (8)
d(hv) hv(v/c)? d(hv) EBlEs — Bl V).
@) VE—hv

The most sophisticated quantum-mechanical cross segt the tip end, we have
tions in our domain of interest are obtained from the multiple
relativistic partial-wave(PW) model [21]. Its quality was )
confirmed by confrontations with other models in the Cou- _; "™&~1 v3 [ _ 1-a® A\ (1-a)?
lomb case and by comparisons to very scarce experimental Ces Y B + )\i2 N k_2h )\iZ 2 L
results for neutrals. After a few data points have been pub- 1+ W P ( + k_2>
lished for neutral atom§21,12 or ions[22], the s(E,hv) ph ph )

have been tabulatef®] for all neutral atoms oZ=1-92,
with fixed E values ranging from 1 to 2000 keV, and for
proportions of energy radiated from O up to 100%. Sincewhere the photon energy is characterized<l§y=2mhv/h2.
there are very few experimental results for neutral atoms anbtliotice that the screened Gaunt factor is reduced in compari-
none for ions, these PW theoretical data will be used in ordeson to the Coulomb valu€3/27. At the other limit when

to evaluate the quality of our cross-section estimates. E>hv, we have
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FIG. 2. Gaunt factor for the Coulomb cross section vs the pro- FIG. 3. Coulomb Gaunt factors ¥ve/E. Comparison of the EB
portion of energy radiatedv/E. Simple evaluations of Eq11) for (—-) simple evaluation of Eq(11) with elaborate PW datgl 2] for
Kramers (Kr), Born (B), and Elwert-Born(EB) approximations. fully stripped Al (circles and Au(squaresat E=5 and 50 keV.

Also indicated(—) are the relativistic Elwert-Born-Gaunt factors
[23] for Ag*”* at the incident electron energi€s=10 and 50 keV.  mains valid for lowZ’s until lower energie€, and the rela-
tivistic effects, of course, are more important at higkés.
_ hwE=0 3 A favorable aspect appears in the total cross sections, though
g —— 2—{(1+ a?)In(4E)—2a2 In(hv) it would not in the angular-dependent cross sections. The
K relativistic effects and the involvement of the higher multi-
2 poles have opposite consequences, so that the nonrelativistic
_ 2 (102 Born approximation remains valid until high&’s than ex-
t(1-e )In(m) (1= (10 pected. For the second case,’Auat E=5 keV, the good
estimate is obtained by classical mechanics, giving 1.33 in-
stead of 1.44 for the PW point aw/E=0.2. Of course, this
improvement of the Coulomb values, though still achieved

Some typical features recalled for Coulomb bremsstrahby use of analytical formulas, is done at the expense of the
lung are helpful to probe the simple approximations. Thesimplicity of the formulas and, even more important, without
Kramers-Gaunt factor, the Born-Gaunt factor, and the simallowing any hope for an easy extension to screened cases.

C. Cross-section results for the Coulomb case

plified Elwert-Born-Gaunt factor are Among theG of Eq. (11), Gy, and G5 are failing at
moderate energies, either for not reproducing the steep as-
G =1 GCbZQ In JVE+ VE-hv cent at smalh»/E values or for leading to an unreasonable
ro B JE—JVE—hv' descent at largév/E. For E of a few tens of keVGES is
definitively the most satisfying estimate for fully stripped
JE ions. In the energy domains where it starts to fail or if a
GEh= GSP. (11)  better precision is needed, the more complicated set of Cou-
VE—hv lomb expressiongl3] is the recommended solution.

] S Let us make a last remark on the behavior at the tip at
They are plotted versus the one variablE in Fig. 2. The  high energies. For a givem/E the GS, are decreasing with
figure also shows two curves obtained for silver by the anamcreasinge for relativistic reasons. For example, the values
lytical formula corresponding to the relativistic Elwert-Born for Al at h»/E=0.9 are 1.11, 0.74, 0.64, 0.56, and 0.26 for
approximation[23] [the full expression of the Elwert factor g=5 50, 75, 100, and 500 keV, respectivél2,24. The
in Eq. (7) is used theh The conclusion is that the Elwert G5 estimate goes down to/2/r=1.10 at the tip and cannot
gible at 10 keV but becomgbappremable at 50 keV. to zero at the tip. It amounts to 0.36 faw/E=0.9 and is
Figure 3 compares th€gg Curve to some of the scarce thys more satisfactory thaBSS; this happens to be a com-
precise PW data points availafle2,24. TheGgg values are  pineq positive effect of the neglect of the relativistic effects

significantly different from the PW values for Al &=50 per seand of the omission of the Elwert factor. At high
keV abovehr/E=0.5 and for Au aE=5 keV belowhv/E  gjeciron energiesS® thus happens to be of better quality

=0.4. In both cases, better Coulomb evaluations are obtaine[ﬂanGCb
through the recommendations of Pratt and FEHg], who EB:
defined validity domains for various formulas obtained in
quantum or in classical mechanics. For#lthe agreement

is reached by the relativistic Elwert-Born formula, leading to
a Gaunt factor of 0.72 versus 0.74 for the PW poinh atE Some values for Fe and Mo obtained in Born and EB
=0.9. Qualitatively speaking, the Born approximation re-approximations were presented in detaiEat5, 10, 50, and

D. Cross-section results for screened cases
at fixed incident electron energyE
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FIG. 4. Gaunt factor for neutral Ag at the incident electron  F|G. 5. Same as in Fig. 4, but f@=50 keV. ——, EB by Egs.
energies oE=1 and 10 keV vdv/E. ---, Born evaluation of Eq. () and(8). Triangles and squares are the EBF and PW data points

(6); ——, Elwert-Born evaluation of Eq¢6) and(8). Triangles and  of Ref. [12]. Also indicated is the EB Coulomb curve of Ed.1).
squares are the relativistic numerical Elwert-B¢gBF) and the

elaborate PW data points of R¢1.2]. selected by the classical mechanics approach are, respec-

tively, 0.3%, and 0.334, at the soft end and at the tip. The

100 keV[9]; the full Elwert expression was employed for the radial range involved in Born approximations is roughly
EB results. We reproduce very similar values by using Eqsgiven by 1k.. and is thus estimated to 0.0&3-233, at the
(2), (6), and(8), which confirms that the parametrization of soft end and 0.14, at the tip. The parametrization of E(.)
\; and the simplified expression of the Elwert factor are apdis appropriate for <1/Aq, that is,r <0.163 for neutral Ag.
propriate. The EB values were compared to PW data whefihis is a reason why neither the classical mechanics method
available[9] and, for that reason, were restrictedhe/E  nor the Elwert-Born approximation—together with the fact
>0.7 for ions. For the examples discussed, the agreemetttat Elwert-Born approximation is not valid at these energies
was at worst of order 15%, which is, of course, the same fofor Ag anyway—can work when using the parametrized po-
the present EB Gaunt factors. We extend here the discussidantial of Egs.(1) and (2). This obstacle disappears, of
of our approximation to lower and to largers, where itis  course, with increasing’s. At E=5 or 10 keV, the EBF and
expected to be less accurate, and we will also compare tHeB curves are very similar. Together with the classical me-
EB estimates to relativistic numerical Elwert-Born results.chanics curveénot plotted herg they come close to the PW
These additional comparisons will enable us to discuss theurve.
validity domains of the EB as well of the Born approxima- Examples are given in Fig. 4 f&€=10 keV and in Fig. 5
tions. The numerical Elwert-Born data quoted below havefor E=50 keV. At 50 keV, the EB, EBF, and PW curves are
been determined in the relativistic Elwert-Born form factor very close to each other. As expected, the use of the classical
model(EBF). The PW and EBF data were obtained from themechanics approach has become out of the question. In the
same relativistic potentidR0] and are taken from Ref12].  energy rangeE=1-500 keV, it never happens that the

ForZ=47 atE=1 keV, the four models illustrated in Fig. simple classical mechanics approach using our parametrized
4 account for the fact that the screening by the bound elegotential is doing significantly better than the present EB
trons suppresses the divergence at simalE typical of the  approximation. Since the Born or EB methods are, by nature,
Coulomb case and it significantly diminishes the Gaunt facbetter suited to energies greater than a few tens of keV, only
tors in comparison tdGk,=1. The EBF curve lies about these two models will be kept under scrutiny. The classical
twice as high as the PW curve, and this discrepancy is dumechanics approaches should be reserved to the lower ener-
only to the shortcomings of Born approximation itself, asgies and another type of parametrized potential should then
both models are relativistic and use the same numerical pdse used.
tential. Our EB curve happens to be relatively closer to the Looking again at Fig. 5, we see that evenEat50 keV,
PW curve, but is significantly lower than the EBF curve. Atthe screened case remains significantly different from the
such relatively low energies, the discrepancy between the EBoulomb case until abolity/E=0.2. At still higher energies
and EBF estimates cannot be due to relativistic effects anduch as=180 keV, the agreement of the EB with the EBF
therefore comes only from a bad description of the potentialalues starts to deteriorate. B&=500 keV, as shown in Fig.
by our parametrization in the relatively exterior radial region6, the EB approximation is doing badly except at the soft
of interest. These two conclusions are confirmed by the faotnd. Abovehv/E>0.3, the screened and Coulomb EB re-
that the curvg25] obtained in a simple classical mechanicssults are very similar, and both fail to reproduce the drop
model and not given here is nearly superposed to the exawtith increasing photon energies. The EB approximation im-
PW curve when starting from the numerical potential, whileproved by using the full expression of the Gaunt factor in Eq.
our parametrized potential leads in the same model to &7) leads to only slightly better results. The EBF and the PW
curve that lies too lowthe values, not plotted here, are 0.10 points are very similar to each other over the whole spec-
at the soft end and 0.23 at the)tiff he significative distances trum; as soon as above//E=0.1 they become very similar
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FIG. 6. Gaunt factor for neutral Ag at the incident electron

energy of E=500 keV vshv/E. ---, Born evaluation of Eq(6);
———, Elwert-Born evaluation by Eq&) and(8); ---, Elwert-Born
evaluation with use of the full Elwert factor in E¢7). Triangles
and squares are the numerical relativistic Elwert-BEBF) and
the elaborate PW data points of REt2]. Also indicated are two
Coulomb curves: ———, Elwert-Born evaluation of Efl); ——,
relativistic Elwert-Born evaluatioh23].
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FIG. 8. Gaunt factors for various degrees of ionization of Ag in
the Elwert-Born approximation of Eq&) and(8) athv=4.5 keV.

trary, the discard of the Elwert factor would introduce a large
error for small values oE/hv. Figure 8 shows results for
silver ions. Notice thaG(E,hv) is roughly linear in Ing).
This is consistent with Eq(10) and the slopes are, in fact,
aroundv3/2# for the neutral and twice more for the Cou-

to the relativistic Coulomb-Elwert-Born results. As we hadlomb case.
noticed for the Coulomb cases relatively to the tip region, the

Born approximation happens to be more efficient than the

EB approximation. In fact, & =500 keV, the nonrelativistic

Born approximation is much more satisfactory than the non-

relativistic Elwert-Born approximation.

E. Cross-section results at fixed photon energies

Since the emissivity coefficientd(hv) are calculated
from cross sections at a givén, it is interesting to consider
Gaunt factors in the representation verg&isFigure 7 is a

companion to Fig. 2hv being now constant and equal to 10

keV and E varying from 10 to 200 keV. The relativistic
effects become appreciable with increaskig. On the con-
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FIG. 7. Gaunt factor for the Coulomb cross sectionB/fv.
Simple evaluations of Eq11) for Kramers, Born, and Elwert-Born
approximations. Also indicated are the relativistic BE28] (—---—)
and Elwert-Born23] values(—--) for Ag*”* ath»=10 keV.

Ill. ENERGY LOSS PER ELECTRON
A. Determination of the energy loss

The energyWV(E) radiated by an electron of ener§y per
unit length of path and for one ion per unit volume, is given

by

e = [ SEM

( )_ 0 v d(hV) ( V)l

W(E) (1 hy

W—fo G(E,hv)d = (12)

In the Coulomb case, the three simplest approaches of Eq.

(11 lead to constant values [(dimension=
(energy X (surface]
= 28_77@ ng:% ngzﬁzmz
“ 3v3 m Wi m ' Wy m ’
13

with  W,,=1.88<10° (in a.u)=2.29<10"%* (in Sl
units). Wy, andWSP differ only by 10% though the corre-
sponding Gaunt factors are quite differ¢aee Eq.(11) and
Fig. 2]. This is due to compensation effects in the course of
the integration. It should not be concluded that any other and
more elaborate model would also lead to a similar value.
Certainly the choice of the method matters les§idE) than
to the Gaunt factors at some criticab/E, but it can still
play an important role. Here, for exampW<5 is bigger by
around 50 %. This larger value is a more realistic estimate at
moderateE’s, as shown in Figs. 2 and 3.

For the screened cases the energy losses have been calcu-
lated from the Born and EB Gaunt factors of E@), (6),
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FIG. 9. Energy losses for Ag ions W as obtained in the Born
(---) and EB(—-) approximations by Eqg€14) and(15).

10 100 E(keV)

FIG. 10. Energy losses for neutral Ag vs electron energy
E. Born(---) and Elwert-Born approximations-—) by Eqgs.(14)

and(15) and squares from the improved EB approximation by using
and(8). For the ion ofa=Z2,/Z, the dimensionless quantities the Elwert factof1—exp(—2wZaggB] V1—hv/E. The solid line
(which could be called the Gaunt factors relative to the enis from the PW elaborate modgs, 12].

ergy lossesare, respectively, in the Borf®] and EB mod-
els;

priate at that energy, as already pointed at in Sec. 11 D. At
higher but still moderate energiéd/zg becomes very satis-
fying, and this on a sound basis. At higs, the EB method
starts to overestimate the energy loss, which could be due to
i the use of the simplified Elwert factor of E¢{). The ana-
lytical feasibility in Eq.(12) is maintained and the quality of
the W5 values slightly improved by using the nearly com-
plete expressiorf(E,hv) [1—exp(—27ZardB] instead of

just &(E,hv). The energy losses for Al and Au in Fig. 11

W5(P)  2v3 1-a
W - 2 In(1+ P?)
1-a)(3+a
- u arctarP, |, (14
Pi
Wig(P)  2v3 1-a? | 1+P?
T 2 I a2+ In 5
W, P 2In2 "\ 1+P?/4
(1-a)(3+a) tarP. — 2 arct P;
2P, arctarP; — 2 arctan;-

confirm these conclusions, but the limit energies between
which the EB approximation is the better choice are shifted.
At lower Z's, the Elwert-Born approximation is known to be
valid until lower energies; it is very satisfactory for Al al-
} ready atE=1 keV. With increasinge’s, the fact to use a
more or less complete form of the Elwert factor matters sig-
(15 nificantly because Z

low. At E=10 keV the

W2[1—exp(—27ZardB)] is already an advisable solution.

with the dimensionless variabl®,=2y2mE/%Z\;, \; given
by Eq.(2), andE for the incident electron energy.

Above around 100 keV, this is not a good enough improve-
ment.G 3 has become a better value for reasons indicated in

Sec. Il D and henc&? is also a better choice. On the con-

B. Results of energy losses

Results are plotted in Fig. 9 fax=2;/Z=0, 0.5, and 1.
At large and small values d@®, the ordinates go over respec-
tively to the Coulomb Born and EB values given in Efj3)
or to o? times these Coulomb limits. Equatiotisd) and(15)
enable us to treat the transition region. At any gienalue,
when the electron energy B for the neutral atom, it is
(1—a)/(1—a"*1) E for the ion, according to E(2).

Results are plotted in Figs. 10 and 11 for a few neutral
atoms and forE=1-500 keV. They are compared to PW
quantum-mechanical tabulated data, tg,/W,, values be-
ing obtained by dividing the last column of the tablég
upon 4.837. The PW curves are comprised between the Born
and EB curves. The energy losses for Ag in Fig. 10 can be
discussed by looking at th&(E,hv) of Figs. 4—6. At small
E, the result of the integration in Eq12) ends up being
closer to the PW exact values when using Born instead of EB
cross sections, as predictable from Fig. 4Eor1 keV. This
is a fortunate composite effect that use of the parametric
potential and of the Elwert-Born approximation are inappro-

w/w

1.5

Kr

0.5

trary, for the heavier atom Au, it is only above around 15
keV thatW2z becomes the better choice; it is still the appro-
priate choice aE=500 keV.

10 E(kev) 100

FIG. 11. Same as Fig. 10, but for neutral Al and Au.
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FIG. 12. Comparison of energy losses in the neutral and Cou- giG. 13, Ratios of the neutral atom to Coulombic energy losses.

lomb cases v&,. Born (---) and Elwert-Born approximations-—)  game notations as in Fig. 12, with squares for Al and triangles for
by Egs.(14) and(15). Full squares and triangles are elaborate PWp

results[5] for neutral Al and Au and empty squares and triangles
are the corresponding results?] for the Coulomb case, for various o ]
values ofE in keV. over to the Coulomb limit, i.e. to 1.39 according to Ef3).
_ o At small P’s, as found for smalE’s, the Ggg(hv/E) curves

In conclusion, the Born approximation happens to be theye flat(see Fig. 4 In that situationGg is roughly equal to
better choice either at small or at large energies, whereas the constant value multiplied byI—hv/E according to Eq.
Elwert-Born approximation is very satisfactory at intermedi-(g) After the integration ovehv/E in Eq. (12) is done, we
ate E's. If we do not want to seZ-dependent limits, it iS  ohtain Wgg/W=1.5. In the intermediate cases where the
safe, though restrictive, to say that for these neutral atomg(g ) is comprised between a Coulomb curve and a flat

the EB approximation is satisfactory within a precision bettercrve, we thus expect th¥zg/Wg amounts to 1.39-1.5 for
than 15% betwee =20 and 200 keV. This is an excellent gny jon or energy in our domain of interest. This is indeed

accuracy in view of the simplicity of E¢15). what is observed in Figs. 9 and 12. Sind&5 and WSP are
. o ) . constant values, it demonstrates at the same time that
C. Discussion in relation with the Coulomb results IB/ng and WEB/W(E:S are always similar to each other

In order to improve this already satisfying precision by within around 8%, as written down in E(L6).
using interpolation or extrapolation laws involving the Cou-  Table I and Figs. 12 and 13 concentrate on comparing the
lomb results, it is necessary to discuss the various Coulompresent Born and EB energy loss results to the corresponding
estimates. Figure 12 and Table | contain the very fewPW values, for the limit caseg;/Z=0 and 1. They deal in
quantum-mechanicalVsy, published12]. For these six data details with the Al and Au cases, wit going from 10 to
points, we show again the corresponding neut, [5]. 500 keV. TheWgg andWj are usually obtained with a pre-
Unlike the Born and EB evaluations, the exact estimates decision better than 30%. This good agreement is possible,
pend not only onP, but also onZ. Figure 12 and Table | though some of bremsstrahlung cross sections involved may
confirm for the neutral atoms and shows for the Coulombbe wrong by as much as 50%. This happens because of the
case that the EB approximation is better at modePataal- ~ cancellation effects that are produced in the integration over
ues. The Born approximation becomes more satisfactory &»/E. The precision with which the ratio#/2z/Wgg and
small P’s, especially for highZ’s, it is again more satisfac- W3/WSP are obtained is also usually much better than the
tory at highP’s especially for small’s. precision with which any of these foW's is obtained. The

Figures 9 and 12 also point out that the rafigg/Wg is  case corresponding to Al &=50 keV is particularly illus-
nearly independent oP. At high P values, the ratio goes trative to that respect. Figure 13 and the last two columns in

TABLE I. Relative precisior(in %) of the energy losses obtained in the BoB) @and Elwert-Born(EB) approximations from Eqg14)
and(15) in comparison with the more accurate PW d&a.2). W® andWC®® are the energy losses for the neutral and Coulomb cases relative
to Au or Al. The incident electron enerdy is in keV and the dimensionless quantRy=22mE/%i\,. The Coulomb data PF correspond
to use of the Pratt-Feng recommendations for the cross se¢fiGhs

Atom Po E W g Weleg Wg Wleg Wlep We /Wl W° /WS leg
Au 6.83 10 -18 24 —-18 13 -15 -04 9.4
Au 15.3 50 —-30 3 —-29 -1 -75 -14 4.5
Al 16.8 10 —41 3 -23 6.1 0.7 -7 -2

Al 37.5 50 —18 16 —-16 16 -7.0 -2 0.3
Au 48.3 500 -31 -3 —30 -25 -25 —-2.5 0.1

Al 119 500 -4 34 —-3.7 31 —24.0 1 2
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Table | confirm that the ratiod/’/ WP are very similar in the W 2v3[1 In(1+ P?)
Born and EB models and also show that they are very similar  \v—=——|5+ a® In2+(1-a) —pr
to the more exact PW estimates Kr :
, 1+a [ 1+P?\ 3+a P,
L o(E) W3(E) WE(E) WA E) + In | — arctan— | |.
Wi =1.39-1.5, b ="—Ch =i Ch = - 2 1+P{/4 P 2
Ws(E) Wg Weg  Whw(E)
(16) (17b)

IV. EMISSIVITY COEFFICIENT AND SPECTRUM
The ratioW°/W® is better reproduced in the EB model at IN A MAXWELLIAN PLASMA
moderateP values and better in the Born model at extreme
P values. If one desires a solution thaHsndependent, it is
as a whole safer to use the Born model, the precision being The bremsstrahlung emission in the plasma is due to the
then better than 7% over the whderange. The equality of collisions of the free electron population energetically parti-
W2/WEP and W3,/WSh, had been noticed earlig®], but ~ tioned on a distribution functionf(E) normalized by

without any discussion and by using anterior less precisdof (E)JdE=1. Let us callN(h») the number of photons
W3, [12]. The half sum of the Born and EB ratios is always emitted per second and per unit of photon energy range in a

exact within 4.5% for these examples illustrated in Table I. pla_sm_a_at unit _el_ectron_ and lon densities. B_y def_mltlon the
emissivity coefficien{(dimension=(volume/(time)] is

A. Determination of the emissisivity coefficient

_ . » do(E,hv)
D. Recommendation for the evaluation J(hy)= hyN(hy)=hyJ' ———— v f(E)dE,

of precise ionic energy losses hv d(hv) 18
The possibility offered by Eq(16) is to extrapolate the

ionic energy loss from the fully stripped value by (E) v being the velocity of the incident electron in the brems-
=WSP(E)[W5(E)/WSP]. An interpolation method was sug- strahlung collision. Consequences of a possible non-
gested 9] between the Coulomb and the screened cases. THYaxwellian character on the spectra have been studied ex-
practical drawback is the shortage\ME\?\,(E) published, in perimentally and theoretically for various cases mentioned,
fact only six points. So to get precise Coulomb values, Wefor exarfnpler; '? Rerf£2|6]i V\/iencitznngerr:trart]etﬂeriror;nthirlnrflllu-n
started from the cross sections recommended by Pratt ang'cc O' @ not complete lonization o € bremsstraniung

. Ch emission and consider only Maxwellian plasmas. When

Fﬁ ng[1d3]_ aq_d ;Irela(_j% used in Sec.t ”&CIMF results da_re Kramers cross sections are used the Maxwellian emissivity
showed In 1able 1. The agreement Witlly, IS Improved in coefficient(for the 47 s and the two modes of polarization
comparison to both the Born and EB models only for two of : :

! ) X ) ) akes the simple expression
the six cases available; it remains as high as 7% for Al an
Au at E=50 keV. Considering that uncertainty and also the hy
one on the ratio®V'(E)/W?(E), we cannot expect to im- 1 o6 exg —
prove the precision of the ionic estimates to much better than — Jy,(hv) = srs15—25 55— Z°
10%. This is hardly an improvement over what is most often 277375 egcmt5h kT
achieved by the diredtViz or W estimates. (19

The other and better possibility is to base the determinaThe numerical constant in E419 amounts to 3.0810 °
tion of the ionic energy loss on the exact neutral PW energyyhen using a.u. througoutncluding for N, N;, and the
lossesWp,,. TheWpy(E) needed is extrapolated from tabu- time), 3.8x10°2° when using Sl units all throughout, and
lated values that are densely enough spd&ddwe obtain 3 0x1072!in the same case but for the temperature in keV in
the ionic energy loss with a precision of better than aroungpe square root.

4.5% Dby the formula The integration oveiE is conveniently calculated in a
W2 (E) [Wi(E) L (E) Maxwellian plasma by the Gauss-Laguerre methibd with
Wi (E)= P { B( Es( } (179 abscissd; and weight factorsv; . The Gaunt factor for emis-

+
2 WE(E) ~ WEg(E) sivity coefficients amounts to
J'(hv) 1 hv E d
whereWg andWgg are given by Eqgs(14) and (15). Ji(hv) ~ KT P kT thG (Ehwjexp — KT E
We recall that if a precision of around 15% is sufficient,
i i ) L _
Wg and Wi themselves are a quicker determination, the :; W;GH(tKT+hw,hy). 20)

first one for small and large values Bf the second one for

moderateP values. A quick look at the agreement \6f3

andW2g with W3, for the energy considered may be a way When the Born or EB cross-section Gaunt factors of Egjs.

to decide which approach is better. Finally, a less precisé6), and(8) are used, it is a function of the two dimensionless
(not worse than 25%, however, and usually much bettet  quantitieshv/kT and L;=2+y2mkT/(%\;). Because of the
simpler approach is to take the half sum of the Born and EB=xponential decrease, the influential Gaunt factors corre-
estimates, which leads to spond toE close tohv. Since the Elwert factor has been
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FIG. 15. Spectral temperatures deduced from the emissivity co-

FIG. 14. Emissivity coefficients for Ag ions in a plasma of efficients of Fig. 14 by Eq(21). Same notations as in Fig. 14.

temperatureT =10 keV vs photon energy, as obtained in the EB

approximation by Eq(25). for the two limitsZ;/Z=0 and 1. The Coulomb and neutral
atom results become close to each other at gk T in
introduced to improve the quality of the cross sections in thakach approximation since the electrons involved become
region,Jeg Will be a better estimate thafy . This might be  more energetic and the screening effect thereby negligible.
the contrary only at highi'’s, but then the plasma would be As expected from Eq(20), Jeg(hv)/J¢ (hv) goes over to
fully ionized and estimations for partially ionized atoms Ggg(hv,hv)=1.10. On the contrary, the screened and the
would not be needed. On the other hand, in the region o€oulomb results differ from each other at smalb/kT
very smallhv’s, the line emission and radiative recombina- where the screening is more influential. At this end of the
tion would dominate the spectrum. spectrum the EB and Born approximations lead to similar
The exponential behavior af,, in Eq. (19) implies an results because the Elwert factor is close to one for small
obvious temperature diagnosfig]. When using cross sec- hv/E values. _ _
tions more sophisticated than Kramers ones, the “spectral Figure 16 shows thaF =Jgg/Jg increases witthv/kT
temperature T, defined below depends on the photon en-and suggests that this ratio is nearly the same for the neutral
ergy at which it is evaluated and may significantly differ 21d the Coulomb cases. The value fofh»/kT) can be
from the thermodynamical temperatufeApplication of the ~ €valuated by usingGeg(E,hv) =a(hv)+b(hv)In(E), as
direct simple diagnostic can then be misleading even in §uggested by Fig. 8 and E(LO). The corresponding Born

Maxwellian plasma Gaunt factor is Gg(E,hv)=y1-hv/E [a(hv)
+b(hv)In(E)]. When performing the integration of Eg.
KT dlhv] KT T - (21 (20), we find
ST T g d(ho 1 v sk =1
d In[J(hv)] Ieg(h)

=[a(hv)+b(hv)In(hv)]-b(hv)
B. R L - Jye(hv)
. Results of emissivity coefficients

SomeJiz(hv) results are plotted in Fig. 14 for silver at XEi(—hv/kT)exp(hs/kT)=C+D. (22)

T=10 keV. Though the highly ionized ions are abundant inThe second ternd involving the exponential integral func-
that plasma, the curves are drawn frdm=0toZ in orderto  tjon E; is usually smaller. The Born emissivity cannot be
show howd/Z? depends oiZ; . The emission is larger for the optained analytically and is calculated by the summation in
higherZ;’s because th&’s are bigger at smalv/E when  Eq. (20). The part of the integrand that brings in the te@m
the potential is more Coulombic. The trend is stronger a§n Eq. (22) for the EB approximation leads to the te@iF
small hv's, since the contribution of the electrons with in the Born approximation, while the part that brings in the
smallerhv/E is then more dominant. Figure 14 shows, intermD leads toD/F,. At each pole, we define the quantity
addition, the straight line relative t#,/Z2 The curves cor- y;=(1/;)(hv/kT). The factorsF, andF, rigorously depend

responding to the small and large's do not run parallel to  only on the ratiohv/kT and amount, respectively, to
it, especially at smalhv’s.

Figure 15 shows the “spectral temperature” deduced _Jes _ 1

from the emissivity curves of Fig. 14. Only f&; =27 is T, F= J_B:Fl(hV/kT)_ >Fa(hv/kT)

close toT over the whole photon range. Fg&y/Z close to 0 EI wi/(1+y;)

or to 1, T, significantly differs fromT at smallhv’s, as

expected. A precise interpretation of experimental spectra

would then require some knowledge of the ionic populations Z wiIn(1+1/y;)

and a good estimate df hv) for the abundant ions. = . (23
Values of J(hv)/Jg,(hv) are shown in Fig. 16 for the E Wi /(1+y)In(1+ 14,

same plasma, for both EB and Born approximations and only o ' '




922 M. LAMOUREUX AND N. AVDONINA 55

— 1
: \ B ez T
. Coulomb case "/——E—B—/
09 #
15 1/ ooooooooooooooooooooo
— . o°
B . 08 / 00°®”  PW-PF
= 8 ’ 00
—° 2 / o°
z = o7k 1o
g] 1 . /OO
(o3
06 f
0.5 R T et 0.5 f L 1 L 1
Y 1 2 3 4 0 1 2 3 4
hv/KT hv/kT

FIG. 16. Ratial/Ji, for the neutral atom and Coulomb cases vs  FIG. 18. Ratio of the neutral atom to the Coulombic emissivity
hv/KT for Ag in a plasma akT=10 keV. ---, Born approximation;  coefficient. ---, Born approximation; ——, Elwert-Born approxima-

——, Elwert-Born approximation; —, using HE3] cross sections  tjon; O, using PH13] cross sections for the Coulomb case and PW
for the Coulomb case and PW elaborate cross secfohfor the elaborate cross sectiofi] for the neutral limit.
neutral limit; @, Karzas-Latter resultgl5].

These two factors are drawn in Fig. 17. The actual rafios this is indeed vgrified for the silver exa}mp(ha'ee.Fig. 18 It

are expected to be between these two values and much clogipuld be tempting to conclude that this ratio is accurate, as
to F. The numerical results ak-g(hv)/Jg(hv) correspond- Was \_/er|f|ed for_ the energy loss&¥(E) in Sec. Ill. Such a

ing to the silver plasma at 10 keV for the neutral atom ancBteP IS not obvious because of a complete lackgf pub-
Coulomb extreme cases are also plotted in the same figurdShed results, both in the Coulomb and in the neutral atom
They are close to each other as well as very cloge,toNe cgges. In the Coulomb case, WC% cannot even calculate the
found very similar values of (h»/kT) for partially ionized ~Jpw Pecause there is nearly 'G’a%/bp”b“Shed' In order to
silver atoms and for higheF’s. Whatever the ionic compo- detérmine at least a more exatt’, we started from the
sition of the plasma the EB and Bom estimates will thusCoulombic Gaunt factors recommended by Pratt and Feng
differ within a precision of a couple of percent by the factor (PP [13]. The Jgg curve obtained is shown in Fig. 16. We
F,. Itis close to 1 andg would thus be acceptable only at &1SO plotted a few nonrelat|V|s_t|c quantum-mgchamcal data,
smallhy's where the spectrum is dominated by line emission?S We could read them approximatively from Figs. 35 of the
and radiative recombination. In conclusidig is always the ~ &'ticle by Karzas and Lattel15]. For theE energies in-

proper choice in regions of practical interest. volved at that temperature, the relativistic effects are negli-
gible and the Karzas-LattdKL) points should be close to

C. Recommendations for the determination the JS2 curve. The agreement is indeed observed in Fig. 16,
of ionic emissivity coefficients which confirms that we can take t&2 curve as a reason-

ably exact curve. Fohy/kT>1, JS2 is also very close to

Fhese two sets of Coulomb results, as in fact the non-
relativistic EB approximation is valid. Coming now to the
determination of1%,,, we used in the second part of H0)

From the preceding subsection it can be concluded th
for any given value oh»/kT we havel2y/JE5=03%/J5P and

25 r Gaunt factors doubly interpolated from the PW cross sec-
=° tions tableg5]. The curvel?,/Ji, is drawn in Fig. 16. It lies
N below theJ¥g/J,, curve. This was expected since tGg,,
are always smaller than t@2; in the region of largev/E
2 (see Figs. 4 and)5We conclude that
JRe(hy)  J3(hv) IR
Ch = Ch .~ 1Ch - (24)
15 Jeg(hv)  Jgi(hv) Jge(hv)

This result is illustrated in Fig. 18 for the Ag plasma at 10
keV. Because of the last inequality, it would not bring any
improvement to use extrapolation or interpolation laws in-
3 voIving. ratiosd 3/J} or g/ g . The precis.io.n on the resu_,llt
hv/ KT would in fact not be better than the precision on the direct
EB evaluation. The last one is overestimated by the unpreci-
FIG. 17. Ratio of the EB to the Born emissivity coefficient for Sion of Ggg at the first pole, that isG(1.11&T+hw,h)
Ag neutral(—) and Coulomk---) cases in a plasma of temperature When using 12 poles. Kiv is bigger than around 5 keV and
T=10 keV, as obtained by Eq&0), (6), and(8), compared to the hv+3KT is smaller than around 200 keV, the precision of
factorsF, andF, of Eq. (23). Jeg through Eq.(20) should be better than 12%. In conclu-
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sion, unless at high photon energies or temperatures where 1.6 -
relativistic Coulomb cross sections should be used, such as —_— e 77547 — — —
the ones of Ref[23], the emissivity coefficient is given sat- 1.4 L 7«
isfactorily by -
-
. £1.2 - /33156/ EB
ea(hv) ; E ----/-/-{---2=2=47 -----
= > WGLg(tkT+hw,hv), (25 o 1l 7 | A
)5 " 7 =i
/ . T <0 \
using Ggg from Egs.(6) and(8). 0.8 - et
9Ges gs.(6) (8) ;// i B
064 .. .
V. TOTAL POWER EMITTED ,//,’
BY A MAXWELLIAN PLASMA 0.4 P oy oy
A. Expression of the total power emitted 1 10 KT(eV)/ Z* 100

The total power radiated P  ((dimension=
(energy[(volume/(time)]) is given equivalently by the inte-
gration of W(E) over the electron energy distribution or of
J(hv) overhv:

FIG. 19. Total power losses for Ag ions ¥ (eV)/z? as ob-
tained in the Borr(---) and EB(—-) approximations by Eq€28),
(14), and(15). Ag plasma at a temperature of 10 keV.

B. Results of total power losses

P= fo W(B)T(B)v dE= fo I(hv)d(h). (26) Results in the Born and EB approximations are given in

Fig. 19 for various degrees of ionization. The two sets of
The referenceDKr based on Kramers cross sections iS, im_Values differ by a factor of 1.39-1.54. It is close to the value
mediately, of the Elwert facton2 for the dominant above paie=j=2
and is consistent with Eq16). Of course,P' is smaller for
1 eb smallerZ; andkT.
PKr:21,531.5W2,5 R z2\kT, (27 Results are given in Fig. 20 in the Coulomb case for
o which Egs.(13) and(28) straightforwardly lead to

where the constant is>X3.0°® (in a.u), 3.84x10 %° (in SI P 203 P 2v3
units), and 4.86<10 2" in the second case but f&f in keV. 5= P 2 In2. (30)
The total power loss off an optically thin plasma is, finally, ke T ke o T

per unit of volume ;N N;P'. Th | he KL d i
The dependence of the ionic total power loss on the indi- ese two constant values encompass the ata poinis

vidual cross-section Gaunt factors is given by a doub|eobtained in the Sommerfeld approximation, as we read them
Gauss Laguerre integration approximately from Fig. 6 of Ref15]. We also determined

PSR from the Coulomb cross sections of REE3]. The curve
obtained lies in agreement with the KL points only for not

P W(E=tT J(hv=tT

Pos wy WEND s, JEET

Pxr Wi ] e (hv=t;T)
(28) 1.6

P! _
P—:E w; Y, WG'[E=(t,+1t)kT,hv=t;T]. (29)
Kr i k

In the Born and EB approximations tHe!//Py, by use of
Egs.(14) and (15), depend only ore=Z/Z; and on the di-
mensionless parametér=2\2mT/(#\;). When using 12
poles in each summation, 144 cross sections are needed in
Eq. (29), but only thej-k pairs withj andk<6 are usually
contributing significantly. Since the second pole has the big-
gest weightv, the major contribution comes rigorously from
the pairt,=t;=t,=0.611 in Kramers approximation and in 1 10 100 1000

fact also when usingsS3. This pair corresponds thv/E KT(eV)/Z?

=0.5. It thus seems essential that the cross section for that

point be of a good quality. The contributions leading to more G 20. Total power losses for the Coulomb limit. ---, Born
than two-thirds of P come from the much wider region approximation; ——, EB approximation of E€B0); ----- , EB ap-
hv/E=t;/[t;+1,]=0.10-0.85. Good cross sections thusproximation but using the full expression of the Elwert factor in Eq.
seem to be needed over nearly the whole spectrum. The cop; —, based on the Coulomb cross sections of RES] and Eq.
siderations of Sec. Ill fortunately let us hope for favorable(29); —-—, same as —, but when always imposing nonrelativistic
cancellations effects. cross sections®, Karzas-Latter resultgl5].

Cb
P/P,,
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FIG. 21. Total power losses for the Coulomb and neutral limits.  FIG. 22. P9/ PP is the ratio of the neutral atom to the Coulom-

Same notations as in Fig. 20, but for the use of the parametribic total power loss: ---, Born approximation; ——, EB approxima-

potential in the neutral cage—) obtained from Eq(29) by use of  tion; —, using PF[13] cross sections for the Coulomb limit and

interpolated elaborate PW cross sectifbs interpolated elaborate PW cross secti¢f$for the neutral limit.
PY% Py, is the neutral estimate. ----, extrapolated from Ehg: by

too largeT’s, as the quantum model of Sommerfeld is non-Ed- (31); —-— based on using 0.8(E5+ Wp) as in Eq.(32); —-
same as——, butusing the full expression of the Elwert-Gaunt

relativistic. In Pratt and Feng’s, more versatile evaluation,f ctor in W2, . evaluation from Eq(29) by interpolating from
there is an energy domain where Elwert-Born cross section%1 b PE\?V ' . q y P 9
are used. In that case, the relativistic form28] is adopted elaborate Cross sectiofts).
for heavy ions whele >(2Zarg)*x511 keV=2.32x10"° Z*
keV, that is, 113 keV forz=47. If we impose that the the Coulomb EB and Born curves. Moreover, we calculated
Elwert-Born approximation be always applied in the nonrel-the PY,y, using again exacW3,, by interpolations from
ativistic form, we indeed reproduce the KL curve over thetables[5]. It lies between the neutral atom Born and EB
whole abscissa range considered in R&b], that is, until  curves, as expected indeed from ¥& results of Fig. 10.
kT(eV)/z2=13 600. Figure 20 also shows that the KL points The energy los¥v2; was slightly bigger than the more exact
coincide at largd’s with the full Elwert-Born-Coulomb ap- W3, at smallE values andV§ was slightly smaller. Owing
proximation usingé-(E,hv) of Eq. (7). This again shows to the integration oveE, the curve for the total power loss
that the KL data are correct only for small or moderate temdies about halfway between the EB and Born curves until the
peratures. abscissa of around 5@e., kT of 110 keV), where it merges

At very highT’s, we also question about our simple esti- into the Coulomb curve.
mates. After looking at the exact Coulomb cross sectjéis
for Z=47 it seems prudent to avoid situations when signifi-
cant contributions td® come from cross sections involving C. Recommendations for the determination
E>E;,=250 keV, which roughly sets the limit of of ionic total power losses

T=E,im/_5=5o keV. It is not restrictive since Ag is already  As expected from these remarks and from Fig. 21, the
fully stripped at smaller temperatures except for the case ofatios of the neutral over the Coulomb total power losses are

extremely tenuous plasmas. Therefore the figures to cOmMgery similar in the three models uséske Fig. 22so that we
will not cover huge temperatures, unlike what was done incoyld try to evaluate the total power loss by

former paperg15,10, where results were given far beyond
the domain of validity of the nonrelativistic atomic models P'=P Y P/PP5 o Ep- (31)
used.
As a last remark, we mention that use of the full Elwert
factor of Eq.(7) is only slightly more satisfying at large but The precision of the determination lies again in the precision
still reasonabld’s than use of the simple Elwert factor. This with which exact Coulomb data are known. As the Karzas-
would make us lose the one paramdierdependence men- Latter results are limited to small's and are only readable
tioned above for the sake of a negligible advantage. In othefrom a few curves, use of the Coulomb cross sections of Ref.
words, we switch directly from a domain where the nonrel-[13] seems, at present, to be the only possibility enabling one
ativistic simplified EB approximation in a screened potentialto cover a large temperature range. They have the drawback
is a good approximation to a domain where the full relativ-of being a succession of four types of evaluations with no
istic Coulomb treatment is necessary. smoothing between the four regions of validity and they may
Figure 21 gives results in the two extreme cagesZ  not be precise enough, no more than tN&2 in Table I.
and 0 for the abscisddr(eV)/Z?=1-100. We checked again Figure 21 confirms indeed that it is just as satisfying to take
that full Elwert-Born and simplified Elwert-Born approxima- the median of the EB and Born estimates. The total power
tions give the same values at these temperatures of around &Bs Gaunt factor for an ion of degree of ionizatiois thus
keV. The Coulomb Pratt-Feng and KL results fall betweeneasily obtained by
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2. 2mtT (17b). Use of Eq.(179 instead of Eq(17b) would evidently
= lead to an even much better precision.

Pi
= w;t

—= - 32
B~ 2 Wit Wi 32

VI. CONCLUSIONS

using Eq.(17b) for W'. When using 12 poles, the first 5  For moderate energies and temperatures, the bremsstrah-
terms are usually sufficient. Figure 22 shows that this direcfung losses and emissivities of electrons scattered by par-
evaluation leads to results of a good quality and of a compatially stripped ions cannot be given correctly by a Coulomb
rable quality as the ones obtained by the interpolationtreatment in either th&/r, Z,/r, or the €—Z,)/r field. We
scheme of Eq(31). This comes about because the inaccu-have noticed anyway that very few data of good quality are
racy corresponding to the EB and Born approximations argublished for the Coulomb case itself, especially for the
smoothed out by the integrations over andE as well as by  cross sections and the energy losses. Moreover] ted P

the half sum. Though the neutral atom case is of little interes€oulomb results given in Figs. 15 should be used only when
to hot plasmas, it enables one to probe our screened esthe nonrelativistic regime is valid. This lack of data makes it
mates thanks to the availability of the very precise PW enunadvisable at present to apply interpolation laws involving
ergy losse$5]. The precision is around 3% for this example. the Coulomb limit. Let us finally mention that, until excellent
Notice that for the other extreme, i.e., the Coulomb case, th€oulomb data are published, reasonably good Coulomb data
precision is 10% based on the same simple use Ofver a large energy range can be determined from the cross
0.5(Wg+Wep), leading then to a constant value of 1%32.  sections recommended by Pratt and FEHg].

Figures 19 and 22 show finally thmi/P.Kr does not vary Returning to our main interest in bremsstrahlung at mod-
strongly with Z;, nor with T. The essential temperature de- erate energies, the screening by the bound electrons plays an
pendence oP' comes fromP, itself in Eq. (27). important role. On the basis of a comparative study of vari-

For high T's when all ions are fully stripped, the total ous approaches, we could establighinitio appropriate ex-
power loss can be evaluated from ER9) using the relativ-  pressions by using a screened analytical potential and by
istic Coulomb-Gaunt factors of R23]. The limit tempera-  playing with relatively simple approximations. The present
ture can be defined by recalling that the dominant ion in aarticle provides formulas convenient to use for the ionic ra-
plasma has an ionization potential such thatkT, { being  diative losses and emissiviti€See Eqs(2), (17), (25), and
of order 3 for dense plasmas and as high as 10-15 for low32)].
density hot plasma®7]. We can admit that all ions are fully
ionized for twice that temperature. This sets the limit tem- ACKNOWLEDGMENT
perature ok T;,(eV)/Z2=25{ for a complete ionization.

For lower temperatures, the total power loss for an ion in  We are very grateful to Professor R. H. Pratt for having
the plasma is obtained for the examples considered here witlaised our interest in this field and for very stimulating dis-
a precision better than 10% by the simple equati@®and  cussions.
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